POLAR SUBSTITUENT EFFECTS IN THE SOLVOLYSIS OF 2-METHYL-2-ENDO-NORBORNYL

2,4-DINITROPHENYL ETHERS

C.A. Grob & A. Waldner

Institute of Organic Chemistry, University of Basel, 4056 Basel, Switzerland.

Summary. The solvolysis rates of tertiary 2-endo-norbornyl derivates $\underline{2}$ are less strongly controlled by the polar effects of substituents at C(6) than the rates of the secondary analogues $\underline{1}$.

There is now general agreement that both secondary and tertiary 2-endonorbornyl derivatives, <u>1</u> and <u>2</u>, respectively, solvolyse by socalled k_c processes, i.e. they ionize to the respective cations <u>3</u> and <u>4</u> without appreciable nucleophilic involvement of the solvent ¹.

It was also established recently that neutral and electron-withdrawing 6-exo-substituents R control ionization rates of secondary 2-endo-tosylates <u>1</u> $(X = p-CH_3C_6H_4SO_3)$ by their inductive effects, whereas electrofugal substituents, such as COO⁻ and CH₂OH, lead to enhanced rates ², since these groups act as net electron donors in k_c processes ³. It was therefore of interest to study the effect of polar substituents in the ionization of corresponding tertiary 2-endo derivatives <u>2</u>. 2,4-Dinitrophenyl ethers $(X = 2,4-(NO_2)_2C_6H_3O)$ were chosen because of their conveniently measureable rates. The TABLE lists first order rate constants for the ethers <u>2a - 2h</u> in 80 vol.% ethanol at 100° C and the corresponding inductive substituent constants δ_T^q of R ⁴.

4429

4430			

		TABLE	
2	R =	k(s ⁻¹)	$\mathcal{S}_{\mathrm{I}}^{\mathrm{q}}$
а	CH ₃	1.74×10^{-4}	0.11
b	Н	1.58×10^{-4}	0
с	(CH ₃) ₂ CH	1.29×10^{-4}	-0.08
d	CH ₂ Br	2.13×10^{-5}	1.07
e	сооснз	7.69×10^{-6}	1.70
f	OCOCH ₃	4.18×10^{-6}	2.12
g	coo	2.89×10^{-4}	0.61
h	сн ₂ он	1.08×10^{-4}	0.66

In Figure 1 log k for the tertiary endo ethers 2a - 2h (plot 1) and, for comparison, log k for the secondary endo tosylates $1a - 1h^2$ (plot 2) are plotted against δ_{I}^{q} . It is evident that both series correlate equally well if the points for the electrofugal substituents COO⁻ and CH₂OH are omitted. However, the two series differ in their sensitivity to changes of δ_{I}^{q} , as evidenced by the reaction constants g of -0.75 for 2 and -0.86 for 1^2 . Thus, formation of the tertiary cations <u>4</u> is somewhat less affected by the polar effect of R than the formation of the less stable secondary cations <u>3</u>. As observed with the tertiary halides <u>5</u> and <u>6</u> the electrofugal groups COO⁻ and CH₂OH act as net electron donors ^{3, 5} and therefore lead to elevated rates by factors of 5.5 and 2.2, respectively.

Figure 2 includes plots of log k for the tertiary endo ethers 2a - 2h vs. log k for the secondary tosylates 1a - 1h (plot 1) and vs. log k for 1-substituted 3-bromoadamantanes 5^{3} (plot 2). The excellent correlations point to a common k_c mechanism for these series of compounds. They show further that relative rates are controlled by polar rather than by steric effects, as is often claimed ⁶.

It is also instructive to compare the reaction constants 9 for <u>1</u> (-0.86), <u>2</u> (-0.75), <u>5</u> (-1.14) and <u>6</u>(-0.71). Of these models only <u>5</u>, which has the highest 9 value, possesses the planar W-like conformation <u>7</u> shown to be most favorable for the transmission of polar effects ².

We thank Professor Paul von R. Schleyer, Erlangen, for stimulating critisism.

REFERENCES

- J.M. Harris, D.L. Mount & D.J. Raber, J. Amer. chem. Soc. <u>100</u>, 3139 (1978);
 H.C. Brown, M. Ravındranathan, F.J. Chloupek & I. Rothberg, 1bid. <u>100</u>, 3143 (1978);
 H.C. Brown & C. Gundu Rao, J. Org. Chem. <u>45</u>, 2113 (1980).
- W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, Tetrahedron Letters <u>1979</u>, 1901, 1905.
- 3) W. Fischer & C.A. Grob, Helv. chim. acta 61, 1588 (1978).
- 4) The δ_{I}^{q} values were derived from the pK_a values of 4-R-substituted quinuclidines: C.A. Grob, B. Schaub & M.G. Schlageter, Helv. chim. acta <u>63</u>, 57 (1980).
- 5) C.A. Grob & A. Waldner, 1bid. <u>62</u>, 1736 (1979).
- H.C. Brown, "The Nonclassical Ion Problem", with comments by P. von R. Schleyer, Plenum Press, New York 1977.

(Received in Germany 8 September 1980)